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Abstract This paper presents an asymptotic analysis of the thickness of the liquid film that coats a smooth solid
substrate when it is withdrawn from a bath of non-Newtonian fluid, and compares the results with experimental
measurements. The film thickness is, to a good approximation, uniform above the point where the film is withdrawn
from the fluid bath, and depends on the rotation rate, the fluid properties and the substrate geometry. Theoretical
predictions of the film thickness for a number of different substrate geometries (an inclined plate, roller and fiber)
are presented, and are compared with experimental measurements in a single roller geometry. Results are obtained
for two different limits of the Criminale–Ericksen–Filbey constitutive equation in which the fluid rheology is either
weakly elastic and dominated by shear thinning, or strongly elastic and dominated by elastic stresses. A lubrication
analysis yields a thin-film equation which characterizes the film thickness as a function of spatial position. The rhe-
ological properties of the test fluids are measured independently using steady and oscillatory shearing deformations.
The viscometric parameters are then used, in conjunction with the governing thin-film equation, which is solved
using matched asymptotics, to give a quantitative prediction of the thickness of the fluid coating. The onset of an
instability which causes the film thickness to vary with axial position along the roller is also observed experimentally.
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1 Introduction

Many industrial processes require the deposition of a thin film of liquid onto a substrate, and the fluids utilized often
have non-Newtonian properties. It is usually desired to be able to control the film thickness. One way to achieve
control is to meter the film using a blade; another is to allow it to be pulled out without any external interference, in
which case the thickness is controlled by the substrate velocity, fluid properties and the geometric configuration [1].
Studies have covered a number of different substrate geometries, a variety of constitutive equations and both low
and high capillary number (dimensionless withdrawal speed) processes. Our focus here is on viscoelastic effects on
single roll coating at low dimensionless speeds, although the analytical results we describe are general and cover
a variety of substrate geometries. As we show below, the appropriate dimensionless parameter characterizing low
speeds will vary in the two different rheological limits we examine.

Landau and Levich [2] presented a seminal theory that characterized the thickness of the film of Newtonian
fluid which is deposited on a plate that is withdrawn vertically from a bath at constant velocity U ; Derjaguin [3]
subsequently extended this work to the coating of a cylindrical fiber. Finally, Bretherton [4] showed that a similar
analysis could be used to characterize the thickness of the uniform film that (when wetting properties of the liquid
on the surface are favorable) surrounds a bubble as it advances into a cylindrical tube of Newtonian liquid. In each
case, the analytical method was based on matched asymptotics and the first term in an asymptotic expansion in
powers of C1/3

N was derived, where CN = ηU/σ is the capillary number for a Newtonian fluid, η is the viscosity
and σ is the surface tension. Wilson [5] later published a detailed asymptotic analysis for a plate withdrawn at an
angle θ from a bath of Newtonian fluid, and noted that this theory also applies to a rotating cylindrical roller lying
with its axis horizontal so that it is partially submerged in the bath.

Many papers, both theoretical and experimental, have followed and review articles are available [1,6,7]. Several
studies have adapted the asymptotic analysis to account for non-Newtonian effects, which are the primary focus in
the present work. Here we review some results from published studies on Newtonian and non-Newtonian coating
flows, focusing mainly on the plate and roller geometries. It is worth noting that, when the radius of the roller is
large compared to the capillary length �c = √

σ/ρg, where ρ is the fluid density and g is acceleration due to gravity,
the effect of the curvature of the cylinder is very weak and results in only small perturbations to the uniform film
thickness on the roller. To leading order the thickness of a film coating a roller which meets the fluid bath at a
local angle α is the same as that coating a plate inclined at an angle α. A summary of the literature, detailing the
geometry and the constitutive equation used, is presented in Table 1. This tabular summary is not intended to be
comprehensive but to focus primarily on key developments for the plate and roller geometries. Some details are
discussed below.

A number of studies have focused on coating at slow nondimensional speeds. For liquids described by the
Newtonian or generalized Newtonian constitutive equation, slow speeds correspond to small capillary numbers
C = η(γ̇ )U/σ , where in general the viscosity η(γ̇ ) may depend on the shear rate γ̇ . For the viscoelastic fluid
studied by de Ryck and Quéré [18] and analyzed in more detail in this paper, slow speeds are quantified by a dif-
ferent nondimensional parameter that incorporates the magnitude of elastic stresses. This dimensionless measure
of elasticity will be derived in Sect. 2.5. In the low-capillary-number limit, a theoretical prediction may be derived
using matched asymptotic methods. Many researchers have considered generalized Newtonian models; for example,
Tallmadge [9] analyzed the problem of coating a flat plate using the Ellis constitutive model. Comparison between
theory and experiments has met with various degrees of success. Gutfinger and Tallmadge [8] developed theory
and performed experiments for coating a plate with a power-law fluid, and found qualitative but not quantitative
agreement. Spiers et al. [11] compared theory for the Bingham, Ellis and power-law models with experiments on
coating a plate with numerous fluids. As these latter authors commented, only a small number of their experimental
results were in good agreement with their theoretical predictions.

The reasons for the discrepancies noted above can be traced to the wide variety of non-Newtonian responses
that can occur in complex fluids. These include rate dependence of the material functions, a natural relaxation
time providing memory of the previous deformation history, and elastic normal stress differences. It is difficult to
parametrize such effects using a single dimensionless parameter such as a capillary number and care must be taken

123



Coating flows of non-Newtonian fluids: weakly and strongly elastic limits 19

Table 1 Partial summary of relevant literature on coating with a Newtonian and non-Newtonian liquid

Authors T: theory, Geometry Constitutive

N: numerical, equation

E: experiment

Landau and Levich [2] T (MA) flat plate Newtonian

Derjaguin [3] T (MA) fiber Newtonian

Bretherton [4] T (MA) bubble in tube Newtonian

Gutfinger and Tallmadge [8] T (MA),E flat plate power-law

Tallmadge [9] T flat plate Ellis

Spiers et al. [10] T,E flat plate Newtonian

Spiers et al. [11] T,E flat plate Bingham, Ellis and power-law

Middleman [12] E roller (no theory)

Tharmalingham and Wilkinson [13] T,N,E roller Newtonian

Cerro and Scriven [14] N flat plate Newtonian

Wilson [5] T (MA) inclined plate Newtonian

Campanella et al. [15] T,E roller power-law

Campanella and Cerro [16] T,N,E roller Newtonian

Ro and Homsy [17] T (MA and flat plate, Oldroyd-B

perturbation fiber,

analysis) bubble in tube

de Ryck and Quéré [18] T (MA),E fiber viscoelastic

Kizito et al. [19] E roller Newtonian

MA indicates papers in which matched asymptotic methods were used. Analysis based on matched asymptotics is restricted to low
nondimensional speeds; a variety of other methods (some adhoc) are used at high nondimensional speeds.

to perform asymptotic analyses and comparisons with experimental data in appropriate limits. Only a few studies
have explicitly considered viscoelastic effects. Ro and Homsy [17] performed a perturbation analysis based on the
Oldroyd-B model which incorporated the effects of small normal stress differences to determine the thickness of
the film left behind when a bubble advances in a Hele-Shaw cell, as well as the thickness of the film deposited on a
flat plate or large roller withdrawn from a liquid. In the fiber coating geometry, de Ryck and Quéré [18] compared
the prediction of a viscoelastic constitutive model valid for steady viscometric flows with experimental results for
concentrated polymer solutions coating a fiber and found good agreement. The work in this paper is based on a
similar constitutive equation to that used by de Ryck and Quéré [18], and in Sect. 2.5 we present a formal matched
asymptotic analysis of the limit that they studied, generalized to cover a number of substrate geometries.

The geometry and notation used in this paper are indicated in Fig. 1. The film thickness h(x1) reaches a constant
value h∞ away from the region of meniscus curvature where the film is withdrawn from the fluid bath. The constant
film thickness h∞ may depend on the substrate velocity U , fluid density ρ, viscosity η(γ̇ ), which may vary with
the shear rate γ̇ , first normal stress coefficient �1(γ̇ ), surface tension σ , gravitational acceleration g, a substrate
length-scale l and the angle of inclination α. In this paper we present theoretical predictions of the film thickness
based on the Criminale–Ericksen–Filbey (CEF) constitutive equation in “weakly” and “strongly” elastic limits.
(A mathematical definition of weakly and strongly elastic limits will be given in Sect. 2.3.) The CEF model [20]
is a nonlinear constitutive equation applicable to weak or strong viscometric flows which are dominated by
shearing deformation. The total stress (including the isotropic pressure term) τττ is represented by:

τττ = −pI + η(γ̇ )γ̇γγ − 1

2
�1(γ̇ )γ̇γγ (1) + �2(γ̇ )γ̇γγ · γ̇γγ , (1)
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Fig. 1 Withdrawal of a
substrate from a bath, which
results in a thin film of fluid
being deposited onto the
substrate. Material
parameters and parameters
that characterize the
interface shape are indicated
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where all variables are dimensional and p is the pressure. The viscosity, η(γ̇ ), and the first and second normal-stress
coefficients, �1(γ̇ ) and �2(γ̇ ) respectively, are arbitrary specified functions of the shear rate γ̇ = √

γ̇γγ · γ̇γγ /2 which
can be chosen to fit the measured experimental data, and the rate of strain tensor γ̇γγ = ∇u + (∇u)T. Finally, the
tensor γ̇γγ (1) is the first upper-convected derivative of the rate of strain tensor and is defined by

γ̇γγ (1) = ∂γ̇γγ

∂t
+ u · ∇γ̇γγ −

(
γ̇γγ · ∇u + (∇u)T · γ̇γγ

)
. (2)

The power-law like forms of the viscosity and first normal stress difference that we choose in the present work,
explained in Sect. 2.2, are such that in the weakly elastic limit the CEF constitutive equation reduces to the
Newtonian or generalized Newtonian fluid constitutive equation, depending on the value of a single nondimensional
parameter in the general functional form chosen for the viscosity η(γ̇ ).

The present work generalizes previous analysis of power-law fluids in coating flows in plate and roller geometries
(see e.g. Gutfinger and Tallmadge [8]) and study of viscoelastic flows in the fiber geometry [18]. The only previous
theoretical study of normal stress effects is by Ro and Homsy [17], who used matched asymptotic methods and
perturbation analysis to explore the effects of relatively weak normal stresses on coating flows using the Oldroyd-B
constitutive equation. To the best of our knowledge, we present the first rigorous matched asymptotic analysis of
coating flows based on the CEF constitutive equation. The thickness of the fluid film that coats the sides and top of
a horizontal rotating roller that is partially immersed in a bath of fluid is also measured experimentally over a range
of rotation rates and depths of immersion.

In Sect. 2 we outline the model formulation, based on the CEF constitutive equation, derive the thin-film equation
governing the film thickness and characterize predictions for the film thickness in the weakly- and strongly-elastic
limits. The experimental setup is described in Sect. 3. Experimental results for two different non-Newtonian fluids,
one which is weakly viscoelastic but exhibits a strongly shear-thinning viscosity, and another fluid with strong
viscoelastic characteristics, are presented in Sect. 4. Using the rheological data to determine the viscometric param-
eters in the model we compare experimental results to the theoretical predictions. We discuss our results in Sect. 5
and present conclusions in Sect. 6.

2 Model

We consider a substrate withdrawn from a fluid bath at a sufficiently high speed that a continuous thin film of fluid is
entrained on the substrate, as shown in the schematic diagram in Fig. 1. The analysis encompasses different substrate
geometries, which may be either planar, or a roller with curvature in the direction of motion, or a cylindrical fiber.
Variations in film thickness are negligible above the meniscus which rises a small distance above the pool for all the
substrate geometries discussed here. The analysis also applies to the thickness of the film that coats the walls behind
the nose of a bubble advancing in a cylindrical capillary tube provided the fluid wets the tube walls. We use the
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lubrication approximation to the momentum equations to derive a nonlinear third-order differential equation that
describes the film thickness, and use matched asymptotic analysis and numerical solutions to the thin-film equation
to predict the constant thickness h∞ that the film attains away from the meniscus region. The theoretical predictions
for the film thickness are only compared to experiments for the single roller geometry, but we also indicate the
theoretical predictions for plate and fiber geometries.

The analysis we present focuses on two-dimensional variations, and the coordinates x1, x2 are indicated in Fig. 1.
The origin for x1 is the point where the static meniscus would meet the substrate at zero contact angle. Also, e1

and e2 are unit vectors in the x1- and x2-directions respectively and the substrate is withdrawn at velocity Ue1.
We denote the steady velocity field by u(x1, x2), the pressure by p(x1, x2) and the stress tensor by τττ . The fluid
density is ρ, g is the gravitational force per unit mass, σ is the surface tension and the interface x2 = h(x1) has
unit normal n and curvature κ . The expression for the curvature is dependent on the geometry of the substrate:
κ = h′′/(1 + h′2)3/2 for a plane, where ′ denotes differentiation with respect to x1, κ = (h/R2 + h′′)/(1 + h′2)3/2

for a roller of radius R and κ = ((R + h)−1 + h′′)/(1 + h′2)3/2 for a fiber of radius R. For generality, we denote
the curvature by the symbol κ .

In addition, κm is the curvature of the static meniscus and also depends on the substrate geometry. For example, for
a flat plate inclined at angle α to the horizontal, as indicated in Fig. 1, κm = √

2(1 + cos α)/�c where �c = √
σ/ρg

is the capillary length. Note that the appropriate value of α is different for the underside or upper surface of the plate:
when calculating the film thickness coating the underside, 0 < α < π/2, whereas when calculating the thickness
on the upper side, π/2 < α < π . For a roller with radius R � �c, the curvature is also κm = √

2(1 + cos α)/�c,
where α is the angle subtended locally at the point where the meniscus forms on the roller. Finally, for a fiber with
radius R � �c withdrawn vertically, κm = 1/R. Again, we use the notation κm to retain generality.

The dimensional time-independent continuity and Cauchy momentum equations for incompressible flows are

∇ · u = 0, ρu · ∇u = ∇ · τττ + ρg, (3)

which are to be solved subject to the boundary conditions

u(x1, 0) = Ue1, n · τττ = (−p0 + σκ)n on x2 = h(x1), (4)

where p0 is atmospheric pressure and U is the substrate velocity; in the case of a roller of radius R rotating at
a rate , U = R. In Sect. 2.1 we introduce the nondimensionalization used in the subsequent analysis and the
dimensionless parameters that appear in the problem; the CEF constitutive equation is presented subsequently in
Sect. 2.2, and we use this to derive the thin-film equation that forms the basis of our analysis in Sect. 2.3.

2.1 Nondimensionalization

We nondimensionalize the equations (3) and the boundary conditions (4) to obtain the lubrication creeping-flow
equations, which are commonly used in studies of coating problems [2–5]. In order that a lubrication analysis may
be applied, different characteristic length-scales are introduced in the x1- and x2-directions. The length-scale in the
x1-direction parallel to the substrate is denoted by an unknown �; physically it corresponds to the length-scale over
which free-surface curvature variations are significant. It is important to note that � will scale differently in analysis
of the weakly and strong elastic limits of the CEF equation. The length-scale in the x2-direction perpendicular to
the substrate is characterized by the film thickness far away from the pool, h∞. We consider the lubrication limit
h∞/� � 1.

Nondimensional variables, indicated by an overbar, are defined as follows

ū1 = u1

U
, ū2 = �u2

h∞U
, x̄1 = x1

�
, x̄2 = x2

h∞
,

p̄ = hn+1∞ p

kU n�
, τ̄ττ = hn+1∞ τττ

kU n�
, ¯̇γ = h∞γ̇

U
, h̄(x̄1) = h(x1)

h∞
, (5)
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where we anticipate the form of the shear-thinning viscosity, η(γ̇ ) = k|γ̇ |n−1, and the scaling of the shear rate
|γ̇ | = |∂u1/∂x2| ≈ U/h∞. The limit n = 1 corresponds to a Newtonian fluid. Three dimensionless parameters
enter the nondimensional lubrication equations and boundary conditions for this flow problem in the limit that
inertia is negligible:

C = kU n�3

σhn+2∞
, G = ρghn+1∞

kU n
, E = NU nh1−n∞

k�
, (6)

where C is a capillary number, and G represents the ratio of gravitational to viscous shear stresses. The third dimen-
sionless number, a Weissenberg number E , enters the problem via the constitutive equation; N is a material constant
related to the first normal-stress coefficient �1(γ̇ ) = N |γ̇ |2n−2. The Weissenberg number E represents the ratio of
first normal stress differences to the viscous shear stresses, and reflects the importance of elasticity in the flow. We
shall refer to a flow in which E � 1 as weakly elastic and one in which E � 1 as strongly elastic.

Although the parameters C, E and G are useful in representing the nondimensional form of the equations, they
are clearly not useful for expressing our final results since they are defined in terms of the unknowns h∞ and �,
both of which depend on the rotation rate or substrate withdrawal speed. Therefore although we shall use these
parameters in manipulating the equations, we shall ultimately write our results in terms of the following related
nondimensional parameters which do not involve the unknown dynamic length-scales h∞ and �:

C̃ = 3
kU n

σκ1−n
m

, Ẽ = NU nκn
m

k
. (7)

The parameters C̃ and Ẽ are, respectively, modified capillary and modified Weissenberg numbers. The problem thus
reduces to determining the variation in the dimensionless scales h∞κm and �κm as a function of C̃, Ẽ . The final
theoretical predictions written in terms of the parameters C̃ and Ẽ can be compared to the experimental results.

In the lubrication limit, h∞/� � 1, and when inertia is negligible in the sense that ρU 2−nhn+1∞ /(k�) � 1, the
momentum equations (3) are well approximated by the nondimensional lubrication equations for creeping flow:

∂ ū1

∂ x̄1
+ ∂ ū2

∂ x̄2
= 0, (8a)

∂τ̄11

∂ x̄1
+ �

h∞
∂τ̄21

∂ x̄2
− G sin α = O

(
h∞
�

)
, (8b)

∂τ̄22

∂ x̄2
+ h∞

�
G cos α = O

(
h∞
�

)
. (8c)

In terms of nondimensional variables, the boundary conditions (4) are

ū(x̄1, 0) = e1, n · τ̄ττ = (− p̄0 + C−1κ̄)n on x̄2 = h̄(x̄1), (9)

where κ̄ = �2κ/h∞. In order to solve Eqs. 8a–c, we require information from a constitutive equation, and the CEF
constitutive equation is introduced next.

2.2 Criminale–Ericksen–Filbey constitutive equation

In this section we derive the pressure and velocity fields in the fluid film when the fluid rheology can be represented
by the CEF constitutive equation (1). Since the magnitude of the second normal stress coefficient |�2(γ̇ )| is usually
much smaller than the magnitude of the first normal stress coefficient |�1(γ̇ )| in polymer solutions or moder-
ately entangled polymer melts [20], we make the approximation |�2(γ̇ )/�1(γ̇ )| ≈ 0. Using the nondimensional
variables defined in (5) and also

η̄( ¯̇γ ) = hn−1∞ η(γ̇ )

kU n−1 , �̄1( ¯̇γ ) = h2n−2∞ �1(γ̇ )

NU 2n−2 , �̄2( ¯̇γ ) ≈ 0, ¯̇γγγ = h∞γ̇γγ

U
, (10)
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the nondimensional CEF equation takes the form

τ̄ττ = − p̄I + h∞
�

η̄( ¯̇γ ) ¯̇γγγ − E
2

�̄1( ¯̇γ ) ¯̇γγγ (1). (11)

From this point onwards, we use nondimensional variables unless indicated otherwise and therefore we no longer
use overbars.

In the lubrication approximation the leading-order contributions to the rate of deformation tensor and each
component of its first convected derivative are

γ̇γγ = ∂u1

∂x2
e2e1, γ̇γγ (1) = −2

(
∂u1

∂x2

)2

e1e1 + h∞
�

T (u)(e1e2 + e2e1), (12)

where T (u) = (u · ∇) ∂u1
∂x2

+ 2 ∂u1
∂x1

∂u1
∂x2

. Therefore the CEF constitutive equation reduces to

τττ =

⎛
⎜⎜⎜⎜⎝

−p + E�1(γ̇ )

(
∂u1

∂x2

)2 h∞
�

η(γ̇ )
∂u1

∂x2
− Eh∞

2�
�1(γ̇ )T (u) 0

h∞
�

η(γ̇ )
∂u1

∂x2
− Eh∞

2�
�1(γ̇ )T (u) −p 0

0 0 −p

⎞
⎟⎟⎟⎟⎠

. (13)

Substituting (13) in the lubrication equations (8b,c) and neglecting terms O(h∞/�), we have

− ∂p

∂x2
+ h∞

�
G cos α = 0, (14a)

− ∂p

∂x1
+ E ∂

∂x1

[
�1(γ̇ )

(
∂u1

∂x2

)2
]

+ ∂

∂x2

[(
η(γ̇ )

∂u1

∂x2

)
− 1

2
E�1(γ̇ )T (u)

]
− G sin α = 0. (14b)

Equations very similar to these formed the basis of analysis of fiber coating by de Ryck and Quéré [18]. Solving
(14a) for the pressure subject to the boundary condition (9) gives

p(x1, x2) = p0 − C−1κ + h∞
�

G(x2 − h) cos α, (15)

and substitution of (15) for the pressure in (14b) leads to the equation

C−1 dκ

dx1
+ E ∂

∂x1

[
�1(γ̇ )

(
∂u1

∂x2

)2
]

+ ∂

∂x2

[(
η(γ̇ )

∂u1

∂x2

)
− 1

2
E�1(γ̇ )T (u)

]
− G sin α + h∞

�
G dh

dx1
cos α = 0.

(16)

Equation (16) is to be solved for the velocity field u1(x1, x2) which also satisfies the continuity equation (8a) and
the boundary conditions (9). The solution can only be determined after we assume explicit forms for the viscosity
η(γ̇ ) and the first normal stress coefficient �1(γ̇ ). Here we take the dimensional functional forms

η = k|γ̇ |n−1, �1 = N |γ̇ |2n−2. (17)

The constants k, n and N are determined from rheological data to capture the power-law dependence of the viscosity
on the shear rate at high shear rates. Note that the constant N is a factor of 3/2 larger than the constant N in the
theory of de Ryck and Quéré [18].
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The forms of the exponents for the shear-rate dependence of viscosity and first normal stress coefficient, both
involving n, have been chosen in accordance with the common experimental observation that �1(γ̇ ) ∝ η(γ̇ )2. This
choice can be motivated by considering the convected derivative term (∇u)T ·τττ in the constitutive equation, which
results in a term of the form λγ̇ τ12 entering the equation for τ11, where λ is the relaxation time of the polymer.
τ11 ≈ λγ̇ 2η(γ̇ ) is second-order in shear rate since τ12 ≈ η(γ̇ )γ̇ . Finally kinetic theory for polymer solutions shows
that η(γ̇ ) ≈ λG where G is the shear modulus, and therefore we expect τ11 − τ22 ≈ η(γ̇ )2γ̇ 2/G. This result is
also consistent with experimental observations [21, pp 58–60].

2.3 Derivation of the thin-film equation

In this section we use the continuity equation (8a) and equation (16) to derive the thin-film equation which char-
acterizes the film thickness h(x1). We generalize the solution method of de Ryck and Quéré [18], who analyzed
analogous equations for a viscoelastic constitutive equation in the fiber geometry. In order to find an approximate
solution to equation (16) and to achieve this generality, we approximate the velocity field using the general form

u1(x1, x2) = 1 + A(x1)

(
x2

2

2
− x2h

)
, (18)

which satisfies the boundary conditions (9) and is motivated by the quadratic dependence of the velocity field on
x2 in a Newtonian flow. When the viscosity is shear thinning, the velocity field is no longer quadratic; however, a
more accurate form is not analytically tractable in an analysis that is general to both the weakly and strongly elastic
limits of the CEF equation.

By integrating the continuity equation (8a) over the film depth, we find that the flux q defined by

q =
∫ h(x1)

0
u1 dx2 (19)

must be constant, as is consistent with the steady-state profile. This flux is nondimensional, scaled by Uh∞. As
x1 → ∞, u → 1, h → 1 and therefore the nondimensional flux q → 1 as x → ∞. Since the flux is constant,
q = 1 everywhere.

In order that the flux obtained from the assumed form of the velocity field (18) is constant and equal to unity,
A(x1) must take the form

A(x1) = 3[h(x1) − 1]
h(x1)3 . (20)

Using (20) and substituting the assumed form of the velocity field (18) in equation (16), we obtain the following
thin-film equation:

C−1 dκ

dx1
+ E

{
∂

∂x1
[A(h − x2)]2n − 1

2

∂

∂x2

[
[A(h − x2)]2n−2T (u(A, h, x2))

]}

− ∂

∂x2
[A(h − x2)]n − G sin α + h∞

�
G dh

dx1
cos α = 0. (21)

Note that we retain the O(h∞G/�) term which is important in the static meniscus.
We now average the elastic stress and the viscous stress gradient terms across the film depth, i.e., in the x2-direc-

tion. Specifically, in the case of the elastic stress term, we approximate [A(h − x2)]n by h−1
∫ h

0 [A(h − x2)]ndx2.
The average of the term involving T (u(A, h, x2)) in (21) equals − 1

2E A2n−1h2n−2. After averaging, the equation
governing h(x1) is

C−1 dκ

dx1
+ E 32n−1[(10n − 1)h − 12n](2 − h)(h − 1)2n−2

2(2n + 1)h4n+1

dh

dx1

+3n(h − 1)n

h2n+1 − G sin α + h∞
�

G dh

dx1
cos α = 0, (22)

which must be solved subject to the boundary condition h(x1) → 1 as x1 → ∞.
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2.4 Asymptotic results for the weakly elastic limit: E � 1

In the limit E � 1, the elastic stress is negligible in comparison to the viscous shear stress and we refer to this as the
weakly elastic limit. In terms of the dimensionless parameters C̃ and Ẽ that do not involve the actual film thickness
but only utilize external scales and material properties, we show below that the condition E � 1 may be written
as Ẽ2n+1 � C̃2n−1. For the power-law form of the viscosity η(γ̇ ) = k|γ̇ |n−1 considered in this work, the weakly
elastic limit encompasses both the Newtonian limit, with n = 1, and the power-law viscosity limit, with 0 < n < 1.

The thickness of the thin film may be determined from equation (22) using matched asymptotics. Firstly, we note
that the definition of C included the parameter � which is not yet specified. We now choose � = (σhn+2∞ /(3kU n))1/3

so that C = 1/3n . Equation (22) is then approximated by

d3h

dx3
1

+ (h − 1)n

h2n+1 + O

(
h∞
�

, E,G
)

= 0. (23)

Here the curvature κ has been approximated by h′′ + O(h∞/�). Although as remarked in Sect. 2.1 the exact
expression for the curvature varies according to the geometry, this leading-order approximation is valid for all
geometries.

Equation (23) describes the film thickness h(x1) in the dynamic meniscus. Note that the equation contains no
parameters other than n, and it is subject to the boundary condition h(x1) → 1 as x1 → ∞. For a specified value
of n, the equation can be integrated backwards numerically from a large value of x1, from the flat film towards the
meniscus, starting from a small perturbation of the uniform film. As x1 decreases, a constant value of the curvature
κ ≈ h′′ is eventually attained, which is a function of n only:

d2h

dx2
1

(x1 → −∞) = f (n). (24)

This value of the curvature must match to the curvature of the static meniscus.
We now rescale variables to capture the dominant balance in the static meniscus. Introducing nondimensional

variables H and X1 defined by:

h = H

h∞κm
, x1 = X1

�κm
, (25)

we may write the thin-film equation (22) as follows

dκ

dX1
− sin α + dH

dX1
cos α + O

(Eh2n∞�κ2n+1
m

G ,
(h∞κm)n+1

G
)

= 0. (26)

This equation characterizes the static meniscus (for details, see [5]). It is necessary to retain the full nonlinear cur-
vature to describe the entire meniscus region accurately, but in the matching region the curvature is approximated
by the second derivative of H(X1) and is equal to the curvature of the dynamic meniscus:

1 = d2 H

dX2
1

= h∞
�2κm

d2h

dx2
1

= h∞
�2κm

f (n) in the matching region. (27)

Elimination of � from (27) shows that the film thickness is predicted to be

h∞
κ−1

m
=

[
9 f (n)3

(
kU n

σκ1−n
m

)2
]1/(2n+1)

= [9 f (n)3C̃2]1/(2n+1). (28)

This result is the first term in a series; the next term is expected to be of order C̃3/(2n+1). Although the CEF equation
in the weakly elastic limit is equivalent to the power-law constitutive equation, use of the approximate velocity field
(18) to solve the thin-film equation (22) and determine the film thickness leads to a small deviation from the exact
result of the power-law constitutive equation, which is discussed in Appendix A.

The function f (n) has been calculated numerically for a range of values of n and is plotted in Fig. 2. When
n = 1, equation (28) reduces to h∞ = 1.34(kU/σ)2/3κ−1

m in agreement with classical results [2–4]. Gutfinger
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and Tallmadge [8] used a numerical fitting procedure and found that the function f (n) was well approximated by
0.646 − 0.76 log n, which is indicated in the inset to Fig. 2. Note that for completeness we extend this computation
for n > 1 corresponding to shear-thickening fluids. Such fluids are typically hard to formulate experimentally,
although some concentrated suspensions do exhibit shear thickening [21, pp 23–24].

We consider the restrictions on the validity of the result (28). Substituting the value of h∞ in the expressions for
� and G yields

� ≈ C̃1/(2n+1)κ−1
m ,

h∞
�

≈ C̃1/(2n+1), and G ≈ ρg

σκ2
m

C̃1/(2n+1), (29)

where ≈ indicates that the effect of the numerical prefactor involving f (n) has not been accounted for. Therefore
the condition C̃ � 1 is equivalent to both the requirements that h∞/� � 1 and that the O(G) gravity term in (23)
is negligible. (Note that ρg/(σκ2

m) < 1 provided a plate or roller is withdrawn at an angle α < 2π/3 and this
inequality also holds for a fiber withdrawn vertically.) We have also assumed that E � 1. Using the prediction for
the film thickness (28) in the definition of E and rewriting this condition in terms of the parameters Ẽ and C̃ which
do not depend on the film thickness, we find that E ≈ Ẽ/C̃(2n−1)/(2n+1) and therefore the condition E � 1 can be
rewritten as Ẽ2n+1 � C̃2n−1.

2.5 Asymptotic results for the strongly elastic limit: E � 1

When E � 1, the elastic stresses dominate over the viscous shear stresses and we refer to this as the strongly
elastic limit. We shall show that the condition E � 1 is equivalent to Ẽ2n+1 � C̃2n−1. To predict the film
thickness in this limit, we use matched asymptotic analysis as in Sect. 2.4 but we choose a different scaling for
� = (σh2n+1∞ /(3NU 2n))1/2. Then CE = 1/3 and the thin-film equation (22) reduces to

d3h

dx3
1

+ 32n−2[(10n − 1)h − 12n](2 − h)(h − 1)2n−2

2(2n + 1)h4n+1

dh

dx1
+ O

(
h∞
�

,
1

E ,
G
E

)
= 0, (30)

where again the curvature κ is approximated by h′′+O(h∞/�). For a given value of n this equation can be integrated
backwards numerically until a constant value of the curvature, which we denote by the function g(n), is attained.
The coefficient multiplying dh/dx1 diverges as h → 1 and therefore must be truncated; physically, this reflects the
finite value of the first normal stress coefficient at low shear rates. The results are not sensitive to the details of the
truncation.

We now discuss the matching between the dynamic and static menisci. To analyze the static meniscus we use the
same rescaling as in the weakly elastic case, given by (25), although now the definitions of h∞ and � are different.
This rescaling again leads to equation (26), and

1 = d2 H

dX2
1

= h∞
κm�2

d2h

dx2
1

= h∞
�2κm

g(n) in the matching region. (31)

Eliminating � from equation (31) leads to the following prediction for the film thickness:

h∞ =
(

3g(n)
N

σκm

)1/2n

, U =
(

g(n) C̃Ẽ
)1/2n

κ−1
m . (32)

In this case, the full result is a series in the parameter (C̃Ẽ)1/4n and the result (32) is the leading-order term. A plot
of the function g(n) for a range of values of n appears in Fig. 3.

From the conditions C̃Ẽ � 1 and C̃2n−1 � Ẽ2n+1 we find that (C̃Ẽ)1/2n � C̃2n/(2n+1) and therefore the film
thickness in the strongly elastic limit of the CEF equation is predicted to be larger than in the weakly elastic limit.
Physically, the film thickness is increased relative to the film thickness of a weakly elastic fluid because the first
normal stress difference generates a net stress perpendicular to the substrate surface and also leads to an effective
tension in the streamlines, which both tend to increase the film thickness.
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Table 2 Summary of theoretical predictions for film thickness h∞ and the conditions for validity in the weakly elastic and strongly
elastic limits, written in terms of the external dimensional variables in the problem

Predicted scaling Conditions for validity

of film thickness h∞

Weakly elastic E � 1 h∞ ≈
(

kU n

σ

)2/(2n+1)

κ
−3/(2n+1)
m

h∞
�

� 1 ⇒ kU n

σκ1−n
m

� 1

ρU 2−nhn+1∞
k�

� 1 ⇒ ρU 2κ−1
m

σ
� 1

Strongly elastic E � 1 h∞ ≈
(

NU 2n

σ

)1/(2n)

κ
−1/(2n)
m

h∞
�

� 1 ⇒ NU 2n

σκ1−2n
m

� 1

ρU 2−nhn+1∞
k�

� 1 ⇒ ρ

kU n−2κn
m

(
NU 2nκ2n−1

m

σ

) 2n+1
4n

� 1

In both limits, substitution of the expressions for h∞ and � into equation (6) convert the restriction on E into a condition on Ẽ2n+1/C̃2n−1 =
N 2n+1U 2nκ4n−1

m σ 2n−1/k4n . The condition that h∞/� � 1 must be satisfied in order that the lubrication approximation used in the
analysis is valid; the requirement that ρU 2−nhn+1∞ /(k�) � 1 results from inertial terms being neglected in the analysis. The expressions
for � in the weakly and strongly elastic limits are given in equations (29) and (33), respectively

We now discuss the restrictions under which these results are valid. Using equation (32), we find that

� ≈ (C̃Ẽ)1/4nκ−1
m ,

h∞
�

≈ (C̃Ẽ)1/4n, and
G
E ≈ ρg

σκ2
m

(C̃Ẽ)1/4n . (33)

Since we neglected terms of order h∞/� and G/E in equation (30), we require that {h∞/�,G/E} � 1. Both of
these conditions are satisfied provided C̃Ẽ � 1. Finally since E ≈ [Ẽ2n+1/C̃2n−1]1/4n and E � 1, we require that
C̃2n−1 � Ẽ2n+1. For completeness we summarize the key results at the end of this section. The film thickness and
the conditions of validity, expressed in terms of the external parameters in the problem, for both the weakly and
strongly elastic limits are listed in Table 2. Figure 4 shows a conceptual diagram indicating the range of validity
of the predictions of film thickness in the weakly and strongly elastic limits. The diagrams differ in the two cases
0 < n < 1/2 and 1/2 < n < 1 because the exponent of C in the relationship E2n+1 = C2n−1, which quantifies the
crossover between weakly and strongly elastic behavior, changes sign when n = 1/2.

We note that one aspect of the theory in the strongly elastic limit is not entirely rigorous: since the CEF model is
based on a retarded motion expansion for slowly varying flows its validity is strictly speaking limited to the small
Deborah number limit, where the effective Deborah number Deff is the ratio of the polymer relaxation time to the
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Fig. 4 Diagram indicating the range of validity of results in the weakly and strongly elastic limits, (a) for 1/2 < n < 1 and (b) for
0 < n < 1/2. The restrictions indicated are those imposed by lubrication theory and by the value of E . The condition imposed by inertia
being negligible would have to be represented in a third dimension and is not indicated here

Motor
Acrylic cylinder

Fluid tank

Micrometer

Rotation speed measured
 by a tachometer

(a)

(b)

Fig. 5 (a) Schematic diagram of the roller coating setup. (b) Sketch of the roller geometry, showing the definition of the inclination
angle α

time that a given fluid element is exposed to high shear in the meniscus region, Deff = λU/� ≈ λUκm/(C̃Ẽ)1/4n

[22]. When the Deborah number is large, extensional effects—which are not accounted for in this theory—may
become important. However, we note that a similar theory presented by de Ryck and Quéré [18] for the strongly
elastic limit in the fiber geometry is in agreement with their experimental results. Therefore it is possible that in
other geometries extensional effects do not alter the film thickness significantly and this theory may predict the film
thickness accurately.

3 Experimental set-up

In this section we describe the experimental set-up, the rheological measurements for the two fluids and the method
used to determine the coating film thickness. A schematic diagram of the system used in the experiments is shown
in Fig. 5. An acrylic roller with diameter 8.3 cm and length 26 cm was partially submerged with its axis oriented
horizontally inside a fluid-filled acrylic tank with dimensions of 38×26×13 cm3. The roller was supported at either
end by an independently adjustable shaft, which was connected by a belt to interchangeable wheels on a motor.
The DC motor could reach a maximum rotation rate of 1400 RPM and had continuous manual dial control. The
rotation speed is determined directly from a calibrated digital tachometer installed within the motor unit. Repeated
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calibrations showed that the measurements based on the tachometer reading agreed with the actual shaft speed to
within 0.5%.

The two test fluids used in the experiments were both polymer solutions composed of polyacrylamide (PAA)
(from Aldrich) of mass average molecular weight 2.2 × 106 g/mol dissolved in a solvent, consisting of a 50/50
mixture by weight of water and glycerol. The surface tensions of both solutions were measured using a Wilhelmy
plate in a Krüss K-10 tensiometer; the value recorded was the static surface tension that is attained when the
measurement reached steady state. The solvent viscosity was measured to be ηs = 6.1 × 10−3 Pa.s. One fluid
contained 0.06 wt% PAA by weight and the other fluid 1.00 wt% PAA. The coil overlap concentration c∗ for the
PAA solution can be estimated from the known mass-averaged molecular weight of the chain and the characteristic
ratio for the chain [20, p 144] . Using these values, we find c∗ ≈ 0.5 wt%, depending on the degree of hydrolysis
of the PAA, which is expected to be 35 ± 5% [23, pp 91–94]. Hence the 0.06 wt% PAA solution is in the dilute
regime (c/c∗ < 1), whereas the 1.00 wt% solution is in the semi-dilute regime (c/c∗ > 1). The consequences of
these differing concentrations can be observed in the viscometric data reported below. We used a TA Instruments
AR1000N stress-controlled rheometer to measure the rheology of the two fluids under both oscillatory and steady
shear conditions. All rheological measurements were made at 25◦C. The rheological data for the two fluids is
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Fig. 6 Rheological data for the test fluid containing 0.06 wt% PAA. (a) Storage (G ′) and loss (G ′′) moduli data as a function of
frequency measured under small amplitude oscillatory conditions. The two lines indicated at low frequencies show the asymptotic
variations G ′ ∼ ω, G ′′ ∼ ω2 expected for simple Maxwell fluids in the limit of low frequency. (b) Viscosity data as a function of shear
rate measured under steady shear conditions. The zero shear-rate viscosity η0 = 0.067 Pa.s. The viscosity data at large shear rates,
|γ̇ | > 10 s−1, is fitted using the power-law model η = 0.1|γ̇ |−0.29 (broken line), where γ̇ has units s−1
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Fig. 7 Rheological data for the test fluid containing 1.00 wt% PAA. (a) Storage (G ′) and loss (G ′′) moduli data as a function of
frequency measured under small amplitude oscillatory conditions. The two lines indicated at low frequencies show the asymptotic
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the function τ11 − τ22 = 40|γ̇ |0.90
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Table 3 Summary of the rheological properties of the 0.06 wt% and 1.00 wt% PAA solutions used in the single roll coating experiments

PAA concentra-
tion (by weight)

Density
ρ [kg/m3]

Surface tension
σ [N/m]

Viscometric functions (fitted) Power law index n

0.06 wt% 1080 0.061 η = 0.10|γ̇ |−0.29 0.71

1.00 wt% 1140 0.057 η = 60|γ̇ |−0.55 0.45

τ11 − τ22 = 40|γ̇ |0.90

PAA concentra-
tion (by weight)

Characteristic
relaxation time λ

[s]

Zero shear rate
viscosity η0
[Pa.s]

Estimate of first normal stress
coefficient in zero shear rate
limit �10 [Pa.s2]

0.06 wt% 0.015 0.067 2λ(η0 − ηs) = 1.9 × 10−3

1.00 wt% 3.3 210 770 (measured)

2λη0 = 1400

plotted in Figs. 6 and 7, and the important rheological parameters and fitted forms of the viscometric functions are
summarized in Table 3. We discuss the rheological data for each fluid below.

The linear viscoelastic storage and loss moduli, denoted by G ′(ω) and G ′′(ω) respectively, of the 0.06 wt% PAA
solution were measured under small amplitude oscillatory conditions, and the data are plotted for a range of angular
frequencies ω in Fig. 6a. Over most of the frequency range measured, G ′(ω) < G ′′(ω) and therefore viscoelastic
effects are weak in this fluid. The range of measured data is limited to frequencies ω > 1 rad/s because the storage
modulus becomes too small to measure accurately at lower frequencies. One estimate of a characteristic relaxation
time of the fluid can be obtained using the formula λ = 1/ωcrit , where ωcrit is the value of the frequency at which
G ′(ωcrit) = G ′′(ωcrit). Using this definition, we find that λ = 0.015 s for this fluid.

The shear viscosity of the 0.06 wt% fluid was also measured for a range of shear rates under steady shear condi-
tions, and the data is plotted in Fig. 6b. We can use a function of the form of the de Ostwaelde power law, η = k|γ̇ |n−1,
to fit the variation in the viscosity data at large shear rates; the data in the range |γ̇ | > 7 s−1 is well described with
n = 0.71 and k = 0.1 Pa.s0.71. The first normal stress difference of this 0.06 wt% PAA/glycerol/water fluid was
so small that reliable measurements could not be made over this range of shear rates. However, an approximate
estimate of the first normal stress coefficient �10 in the limit of zero shear rate can be obtained using the expression
�10 ∼ 2λ(η0 − ηs) = 1.9 × 10−3 Pa.s2, using the measured value η0 = 0.067 Pa.s for the zero shear rate viscosity.

The analogous rheological data for the 1.00 wt% PAA solution is plotted in Fig. 7. The storage and loss moduli
data shown in Fig. 7a are such that, over the most of the frequency range measured, G ′(ω) > G ′′(ω) and therefore
viscoelastic effects are strong in this fluid. The relaxation time λ = 1/ωcrit is calculated to be λ = 3.3 s. The data for
the viscosity and first normal stress difference as a function of shear rate measured under steady shear conditions
are plotted in Fig. 7b. Again, a function of the form η = k|γ̇ |n−1 is used to fit the power-law behavior of the
viscosity data, and a good fit is achieved at all measured shear rates with n = 0.45 and k = 60 Pa.s0.45. Over the
range of shear rates for which the first normal stress difference is measured, the data can be fitted using a power-law
function (τ11 − τ22) = N |γ̇ |2n where N = 40 Pa.s0.90. The first normal stress difference in the limit of zero shear
rate is �10 = limγ̇→0 (τ11 − τ22)/γ̇

2 ∼ 770 Pa.s2, while the estimate 2λη0 = 1400 Pa.s2 is obtained based on the
measured value of the zero shear viscosity η0 = 210 Pa.s.

We next describe the measurements made in the single roll coating experiments. When the cylinder is partially
immersed in the fluid and is rotated about its axis, various different types of steady-state behavior are possible.
At very low rotation rates, a continuous fluid film is not generated and the rotating cylinder remains dry above a
certain height due to dewetting effects; at intermediate rates, a thin axially uniform fluid film is generated which
coats the entire cylinder and finally, at sufficiently high rotation rates an instability develops and the film becomes
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non-uniform in the axial direction. Our experiments focus on the intermediate range of rotation speeds in which
the film thickness is independent of the axial position. The measured film thickness is found to be independent of
the rotation direction and, since the cylinder radius is large compared to the capillary length, variations in the film
thickness in the azimuthal direction are also negligible. The gravitational terms that cause azimuthal variations in
the film thickness are shown to be negligible at leading order away from the meniscus by the asymptotic theory
presented in Sect. 2.

We varied the depth of the fluid in the acrylic tank which corresponds to varying the cylinder immersion depth,
defined to be the vertical distance from the flat free surface (away from the curved meniscus that forms close to the
cylinder) to the lowest point of the cylinder. As the immersion depth varies, the local inclination angle α between the
substrate and the horizontal at the point where the film is withdrawn from the fluid bath varies, resulting in different
film thicknesses. The angle α is indicated in Figs. 1 and 5. We took measurements at immersion depths 7 cm, 8 cm,
9 cm and 10 cm which correspond respectively to four different inclination angles, α = 23◦, 47◦, 64◦ and 79◦.

The film thickness was measured using a digital micrometer located on a track that was securely attached to the
roller apparatus. Before the roller started to rotate, we positioned the micrometer needle tip so that it just touched
the cylinder surface and recorded that position as the zero point. When the dry cylinder was rotated through 2π

radians, the maximum deviation of the cylinder surface from the calibrated zero measurements was 12 µm. For each
fluid at a given cylinder immersion depth, we slowly increased the rotation speed of the cylinder until a thin layer
of fluid coated the roller uniformly. When a steady film was established, a film thickness measurement was made
by reading the value shown when the micrometer needle tip just made direct contact with the surface of the fluid
film. At a given rotation speed and inclination angle, five film thickness measurements were recorded at different
locations along the axis, and we took the average value as the film thickness reading. The relative error of the film
thickness measurement is around 8%, and originates from the axisymmetric level of the cylinder and human error
in the measurements. The rotation speed was increased in small increments and the flow was allowed to adjust to
the new steady state before the next film thickness measurement was taken.

All rheological and experimental measurements were made at an ambient temperature of 25◦C. We ensured that
reported results were reproducible by taking data multiple times and on multiple days. The fluids were thoroughly
mixed prior to the roll coating experiments, and the measured change in the rheology of both fluids before and after
the coating experiments was not significant. Finally, in order to verify the accuracy of the experimental set-up and
measurement technique, we compared the film thickness results we obtained using mineral oil (Aldrich) with the
theoretically predicted film thickness hN∞ in the Newtonian limit [2,3,5]:

hN∞ = 1.34κ−1
m

(
ηR

σ

)2/3

= 0.948(ηR)2/3

[(1 + cos α)ρg]1/2σ 1/6 . (34)

The mineral oil has constant viscosity η = 0.90 Pa.s, surface tension σ = 0.060 N/m and density ρ = 990 kg/m3.
Figure 8 shows that over a moderate range of rotation rates  the experimental data is in reasonable agreement
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Fig. 8 Experimental results for film thickness obtained with mineral oil as a function of the roller rotation rate , and the theoretically
predicted film thickness (34) in the Newtonian limit. Measurements were made for two inclination angles, α = 23◦ and 79◦
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with the theoretical prediction (34), represented by the solid and broken lines for the two different inclination
angles α. At a rotation rate of 1 rad/s, the capillary number ηR/σ ≈ 0.13 and the relevant Reynolds number
ρRh2∞/(η�) ≈ 0.6; at a rotation rate of 20 rad/s the capillary and Reynolds numbers take the values 2.7 and 12,
respectively. Therefore in this range inertial and gravitational effects start to become significant. It would appear
that they have approximately equal and opposite effects, given the agreement with the theory that neglects both
effects.

4 Experimental results

In this section we present the results of the experiments described in Sect. 3 in which we measure the thickness of
the film that coats a rotating roller as a function of rotation speed and of the depth of immersion of the cylinder.
We consider the two cases in which the fluid rheology has weak (0.06 wt% PAA) and strong (1.00 wt% PAA)
viscoelastic properties, and compare our results with the theoretical predictions of film thickness derived in Sects.
2.4 and 2.5, respectively.

4.1 Dilute polymer solution (0.06 wt% PAA)

The measured rheology of the 0.06 wt% PAA solution was discussed in Sect. 3, and the important rheological
parameters are summarized in Table 3. Viscoelastic effects are relatively weak in this fluid, and the most significant
deviation from Newtonian behavior is the shear thinning observed in the viscosity.

We first consider the variations in film thickness with cylinder rotation rate. In Fig. 9a, the experimentally-
measured film thickness is plotted as a function of the roller rotation rate when the inclination angle is α = 47◦. The
error bars reflect the standard deviation of the five measurements made at different axial positions. Two theoretical
predictions for film thickness are also plotted: firstly, the prediction (34) for a Newtonian liquid based on a viscosity
equal to 0.067 Pa.s, which is the value of the zero shear rate viscosity of the 0.06 wt% fluid (broken line), and
secondly prediction (28) for a fluid with weakly elastic rheology (solid line). The prefactor in (28) was calculated
numerically to be f (0.71) = 0.90 and therefore there are no free parameters in the weakly elastic prediction.

At sufficiently low rotation rates, the measured film thickness value is close to the prediction (34) based on
Newtonian rheology. However, as the rotation rate increases above  ≈ 2 rad/s, shear-thinning effects in the fluid
viscosity become significant and the film thickness decreases relative to the prediction for a Newtonian fluid. There
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Fig. 9 Experimental results for the film thickness generated using 0.06 wt% PAA, compared to theoretical predictions in both the
Newtonian and weakly elastic limits. (a) Film thickness versus roller rotation rate at inclination angle α = 47◦. (b) Plot of dimension-
less film thickness H defined in equation (35) versus k(R)n/(σκ1−n

m ), where the values of the rheological parameters used are given
in Table 2. Also marked are the theoretical predictions for the film thickness of a shear-thinning liquid (solid line) and a Newtonian
liquid (dashed line)
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is a transition region between rotation rates of 2 and 13 rad/s where the measured film thickness falls between the
theoretical predictions in the Newtonian and weakly elastic limits, and then at higher shear rates the data are in
good agreement with the predicted film thickness based on the weakly elastic theory. This is to be expected since
the shear thinning in the fluid viscosity is only significant above a certain shear rate; below this shear rate, the
viscosity is constant and is approximately equal to the zero shear rate viscosity (see Fig. 6). The characteristic shear
rate in the dynamic meniscus region can be simply estimated to be of order R/h∞. The experimental data shown
in Fig. 9 thus corresponds to shear rates in the range 280 ≤ γ̇ ≤ 1880 s−1. The rheological data in Fig. 6 shows
that the power-law model provides a good description of the rate-dependent viscosity over this range of shear rates.
We attempted to capture the crossover from the power-law to the Newtonian limit quantitatively using theoretical
methods by using a numerical program to solve the equation for film thickness based on the Ellis constitutive
equation [24]. However, we found that the crossover to the Newtonian limit was predicted to occur at significantly
lower rotation rates than those observed in the experiments presented here.

Finally, when the rotation rate is higher than c ≈ 26 rad/s, the film thickness exceeds the value predicted
based on the weakly elastic rheology, although it is still lower than the film thickness predicted for a Newtonian
fluid. At rotation rates higher than those plotted on this graph, a hydrodynamic instability develops and the film
becomes axially nonuniform. Overall, we find agreement between the experimental observations and the weakly
elastic predictions in the range 13 rad/s <  < 26 rad/s (1100 s−1 < γ̇ < 1400 s−1).

Next, we obtain a general result by nondimensionalizing the film measurements so that the rotation rate is con-
verted to a capillary number. We also consider the variation of the film thickness with the depth of immersion of
the roller. Motivated by the prediction based on weakly elastic theory, we plot a nondimensional film thickness H,
defined to be

H = h∞
(1 + cos α)3/[2(2n+1)] R

=
[

9 f (n)3
(

k(R)n

σκ1−n
m

)2
]1/(2n+1)

1

κm R
, (35)

where the angular scaling is chosen such that according to the weakly elastic prediction (28), H is independent of
the angle α. Experimental plots of the function H are plotted as a function of the capillary number k(R)n/(σκ1−n

m )

in Fig. 9b. Data for H based on four different inclination angles ranging from 23◦ to 79◦ is quantitatively similar
when k(R)n/(σκ1−n

m ) < 0.23. At higher values, following the onset of the axial instability, the data departs from
the weakly elastic prediction and the data shows increasing scatter owing to the spatial and temporal variations in
the film thickness.

In the weakly elastic limit, the predicted and measured film thickness is considerably smaller than for a
Newtonian fluid with (constant) viscosity equal to the zero shear rate viscosity. There is also a difference between
the qualitative variation of the film thickness with rotation rate in the Newtonian and weakly elastic limits: in the
Newtonian limit the film thickness varies as 2/3, whereas in the case of a weakly elastic shear-thinning liquid the
thickness is proportional to 2n/(2n+1).

The prediction of the weakly elastic model appears to agree with experimental data reasonably well when the
nondimensional rotation rate k(R)n/(σκ1−n

m ) falls between the values 0.13 and 0.23. It should be noted that
this apparently limited numerical range in fact corresponds to a factor of five variation in the rotation rate due
to the power-law exponent of 2n/(2n + 1) ≈ 0.47 in equation (35). Furthermore, the solid lines in Fig. 9a,b are
not a regression to the data but represent an a priori prediction of the dimensionless film thickness in terms of
independently measured geometric and rheological properties.

4.2 Semi-dilute polymer solution (1.00 wt% PAA)

The rheology of the 1.00 wt% PAA solution includes relatively strong viscoelastic effects, as shown by the mea-
surements presented in Sect. 3 and, in particular, the summary of the rheological data in Table 3. Both the viscosity
and the first normal stress difference exhibit shear thinning over the measurable range of shear rates, and depend
on the shear rate through a power-law relationship. We note that in the theoretical analysis presented in Sect. 2,
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Fig. 10 Film thickness versus roller rotation speed of 1.00 wt% PAA at four inclination angles: experimental data, with variations pro-
portional to R/(1 + cos α)1/(4n) also indicated (solid lines). This qualitative variation appears in the theoretical prediction (32) in the
strongly elastic limit, although the prefactor calculated from the theory is significantly larger than the prefactor in the experimental data.
The lines plotted are obtained by fitting the data to the functional form c, where c(α = 23◦) = 0.027, c(α = 47◦) = 0.027, c(α =
62◦) = 0.033, c(α = 79◦) = 0.035

we assumed that the first normal stress coefficient varied as η2, i.e. �1 ∝ |γ̇ |2n−2. The fits to the rheological data
presented in Sect. 3 resulted in the relationships η ∝ |γ̇ |−0.55 and �1 = (τ11 − τ22)/|γ̇ |2 ∝ |γ̇ |−1.1, which is
consistent with both forms assumed in the theory when n = 0.45.

In Fig. 10, we plot the measured film thickness as a function of rotation rate for four different inclination angles
and compare the experimental data with the linear variation with  that is predicted in the strongly elastic limit
(solid lines). Qualitatively, the variation does appear to be approximately linear, although some discrepancy is
observed at low rotation rates. In addition, the angular dependence of the gradient c(α) obtained by fitting to the
form h∞ = c(α) is well represented by the variation (1 + cos α)−1/(4n) predicted in the theoretical formula
(32). Furthermore the deformation rates, γ̇ = R/h∞, spanned in these roll-coating experiments (corresponding
to 40 ≤ γ̇ ≤ 120 s−1) is consistent with the range of shear rates over which power-law dependence of both the
viscosity and the first normal stress difference can be observed in Fig. 7. However, the value of the coefficient
g(n) which was calculated numerically proved to be significantly too large; we found g(0.45) = 0.48, whereas
the prefactor in the experimental data at 10 rad/s is on the order of 0.005. We believe that the discrepancy between
theory and experimental arises because one of the constraints on the theory is not satisfied in the experiments. This
issue will be discussed further in Sect. 5.

We collapse the experimental data for different immersion depths by nondimensionalizing the film thickness
using the following rescaling:

H = h∞
R

(
1 + cos α

2

)1/(4n)

=
(

N (R)2n

σ

)1/(2n) (
σ

ρg

)1/(4n)

, (36)

so that, using the prediction (32), the rescaled film thickness H is predicted to be independent of the inclination
angle. The rescaled film thickness H is plotted as a function of the Deborah number D = λ, which is the rotation
rate nondimensionalized using the relaxation time λ = 3.3 s, in Fig. 11. The data are generally clustered close to
the straight line. Therefore we conclude that the predicted qualitative variation of the film thickness with both the
cylinder rotation rate and the inclination angle appears to be in good agreement with experimental data.

5 Discussion

In the previous section we presented film thickness data for both 0.06 wt% and 1.00 wt% PAA solutions, and
compared the results with theoretical predictions in the weakly and strongly elastic limits, respectively. For the
0.06 wt% solution, we observed reasonable quantitative agreement with the theory in the weakly elastic limit over a
range of rotation rates and for a number of different inclination angles. For the 1.00 wt% solution, the data showed
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Fig. 11 Dimensionless film thickness H defined in equation (36) versus Deborah number D = λ for strongly elastic fluid 1.00 wt%
PAA. The gradient of the solid line is significantly smaller than the prefactor predicted by the theoretical formula (32)

Table 4 Values of the dimensionless parameters C̃, E and ρU 2−nhn+1∞ /(k�) for both the 0.06 wt% PAA and 1.00 wt% PAA for selected
values of the cylinder rotation rate

Rotation rate [rad/s] 1 5 10 25

wt% PAA

C̃ = 3kU n/(σκ1−n
m ) 0.06 8.7 × 10−4 2.7 × 10−3 4.5 × 10−3 8.6 × 10−3

(C̃Ẽ)1/(4n) = 3NU 2n/(σκ1−2n
m ) 1.00 10 23 32 51

E = Ẽ/C̃(2n−1)/(2n+1) 0.06 0.7 1.8 2.7 4.6

= [Ẽ2n+1/C̃2n−1]1/(4n) 1.00 2.4 4.6 6.0 8.6

ρU 2−nhn+1∞ /(k�) 0.06 0.073 1.8 7.3 46

1.00 0.23 13 71 700

The expression for ρU 2−nhn+1∞ /(k�) for the 0.06 wt% PAA fluid is given in terms of the material parameters by (37), and the expression
for 1.00 wt% PAA is given by (38). We take α = 0 in calculating the value of the curvature κm , and use the estimate of the first normal
stress coefficient in the limit of zero shear-rate for the value of N for 0.06 wt% PAA. The theoretical constraints on the parameters
tabulated here are summarized in Table 2 and Fig. 4

the same trends as the theory for the strongly elastic limit as both rotation rate and inclination angle was varied,
but the numerical prefactor predicted by the theory was substantially larger than that measured experimentally.
In this section, we discuss this discrepancy as well as other aspects of the comparison between the data and the
theory further. In particular, we discuss the values of the parameters C̃, Ẽ , E and the effective Reynolds number
ρU 2−nhn+1∞ /(k�) for the 0.06 wt% and 1.00 wt% PAA solutions. We also present some data on the onset of an axial
instability at high rotation rates.

The constraints on the values of C̃, Ẽ , E and ρU 2−nhn+1∞ /(k�) that apply to the theory in the weakly and strongly
elastic limits are summarized in Table 2 and Fig. 4. We first consider the values of C̃ and E for the 0.06 wt% solution
and of (C̃Ẽ)1/(4n) and E for the 1.00 wt% solution, and we tabulate the calculated values for both fluids over a range
of rotation rates in Table 4. For the 0.06 wt% PAA, the capillary number C̃ is less than unity at all values of the
rotation rate, as required for the theory in the weakly elastic limit to be valid. The elasticity parameter E does take
values greater than unity, although strictly speaking the weakly elastic theory is valid for E � 1.

Also, the theory neglected inertial effects, which corresponds to the condition that

ρU 2−nhn+1∞
k�

= ρ(R)2κ−1
m

σ
� 1 (37)

in the weakly elastic limit. Note that with the chosen scaling the effective lubrication Reynolds number in (37),
characterizing the magnitude of inertial stresses relative to viscous stresses in this flow, is a Weber number. As can
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be seen from the values tabulated in Table 4, in the experiments this parameter exceeds the value unity when the
rotation rate is greater than 5 rad/s, and it is therefore surprising that we obtain quantitative agreement between the
experimental data and the theory, which neglects inertial effects. We investigated the consequences of inertial effects
for the 0.06 wt% PAA solution both theoretically and experimentally, and a more detailed theoretical analysis of
the magnitude of inertial effects in the weakly elastic limit is presented in Appendix B. A comparison between the
analysis of Appendix B and the experimental results implies that the nondimensional constant that characterizes
the strength of inertial effects, which varies with the power-law index n, is smaller when the fluid is shear-thinning
(n < 1) than in the Newtonian limit (n = 1).

For the 1.00 wt% PAA, the value of the parameter E always exceeds unity as is required for the strongly elastic
theory to be valid. However, the product of the modified capillary and elasticity numbers C̃Ẽ is not small compared
to unity which violates the second condition that must be satisfied for the theory to be valid. In addition, inertial
(including centrifugal) effects are neglected in the theory which leads to the following constraint

ρU 2−nhn+1∞
k�

= ρ

k(R)n−2κn
m

(
N (R)2nκ2n−1

m

σ

)(2n+1)/(4n)

� 1 (38)

in the strongly elastic limit. In the experiments on the 1.00 wt% PAA solution, this parameter is significantly larger
than unity when the rotation rate exceeds 5 rad/s. Therefore two constraints on the theory are violated, and this is the
most likely explanation for the discrepancy between the theoretical predictions and experimental measurements. In
general, the experimental trend would be qualitatively different from the theory, but we observe only a difference
in the quantitative prefactors.

This leads us to a comment about the significance of the substrate geometry in the non-Newtonian coating
problem. In Newtonian coating flows the curvature of the static meniscus, which depends on the geometry of the
coating substrate, does not enter the problem when the length-scales are nondimensionalized by κm . Therefore the
range of the validity of the low capillary number result only depends on the value of the capillary number in the
Newtonian limit CN = ηU/σ and is independent of the curvature. The substrate geometry thus plays a limited
role in the Newtonian problem. In contrast, in the non-Newtonian coating problem we analyze in this paper, the
curvature of the meniscus κm affects the values of C̃ and Ẽ . When other parameters are held constant, a larger value
of the curvature (i.e., smaller radius of curvature) yields a smaller value of C̃ and a larger value of Ẽ . Also, the
importance of inertial effects decreases as the curvature increases. Therefore the conditions in the theory that are
violated in the present experiments using a roller with diameter 8.3 cm are more likely to be satisfied in experiments
using a thin fiber [18].

Finally, we comment briefly on the onset of an axial instability that leads to periodic variations in the film
thickness. A representative image of the ribbing instability observed in the weakly elastic case is shown in Fig. 12.
In this image (viewed from the downstream side, i.e., an azimuthal angle of θ ≈ 3π/2) the top of the cylinder is
rotating towards the reader. The free surface shows periodic ribs along the axial length of the cylinder. The ribs have
an approximately constant wavelength but have a complicated axial structure. Values of the critical rotation rate
and the critical film thickness at which the instability develops are tabulated in Table 5 for the mineral oil, and the

Fig. 12 Photograph of axial instability observed for 0.06 wt% PAA with rotation rate 41.2 rad/s (/crit = 1.88) and inclination angle
47◦. The wavelength is approximately L Z = 2.5 cm (L Z /R = 0.60)
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Table 5 The onset of
instability: table showing
the critical rotation rate and
critical film thickness for
the mineral oil and the
0.06 wt% PAA and
1.00 wt% PAA solutions

Angle: 23◦ 47◦ 64◦ 79◦

Critical rotation rate crit [rad/s]

Mineral oil 15 21 20 17

0.06 wt% PAA 21 22 15 18

1.00 wt% PAA 8.5 9.9 8.4 17

Critical film thickness hcrit[cm]

Mineral oil 0.22 0.32 0.33 0.33

0.06 wt% PAA 0.059 0.064 0.062 0.07

1.00 wt% PAA 0.32 0.35 0.33 0.46

0.06 wt% and 1.00 wt% PAA solutions. Such instabilities can arise from either inertial effects [25] or elastic effects,
resulting from the interaction of the first normal stress with the streamline curvature [26,27]. Although analysis of
this instability is not the primary focus of the present work a number of important factors can be discerned from this
data and previous theoretical studies in related geometries. Firstly, we note that purely inertial instabilities [25] and
purely elastic-driven instabilities (e.g. [26–28]) have been studied in single roll coating applications. Furthermore
detailed studies in the Taylor–Couette geometry have shown that in addition to purely elastic instabilities arising
from streamline curvature [29,30], weak elastic effects may stabilize or destabilize inertially-driven flow transitions.
These competing effects can be represented by stability loci plotted on a diagram of the critical Deborah number
versus critical Reynolds number. The data in Table 5 indicate that weak elastic effects (i.e., shear thinning in the
fluid viscosity) significantly reduce the critical film thickness at onset of instability but in general shift the critical
rotation rate to higher values. In contrast strong elastic effects in the 1.00 wt% PAA solution lead to thicker films
at the onset of instability but substantially lower critical rotation rates. Lopez et al. [31] examined non-Newtonian
effects on the transition to a ribbing instability, the case in which one film splits into two in a diverging gap, and
found a weak reduction in the critical rotation rate at low polymer concentrations, but a qualitatively similar strong
reduction in the critical rotation rate in elastic fluids with high polymer concentrations.

6 Conclusions

In this paper we have presented a theoretical analysis of the film thickness that is generated by coating flows in a
variety of geometries (a plate, a roller, a fiber and inside a cylindrical tube) based on the CEF constitutive equation.
We have focused on the low Reynolds number regime, and have analyzed two different limits: in the weakly elastic
limit, shear-thinning of the viscosity dominates and the elastic stress is unimportant. The film thickness is deter-
mined by a balance between viscous and surface tension forces, as in the Newtonian limit, although the shear-rate
dependence of the viscosity significantly reduces the resulting film thickness. In the strongly elastic limit, the effects
of the elastic stress dominate and compete against surface tension to set the film thickness. The effect of viscosity,
although not entirely negligible, is relatively weak in this limit. The expression for the film thickness in terms of
the variables in the problem in the two different limits treated here, and the conditions for validity, are summarized
in Table 2. The theory predicts that in the weakly elastic limit the film thickness is less than in the Newtonian limit,
whereas in the strongly elastic limit it is greater. The theoretical results presented in this paper represent the first
detailed analysis of film coating with fluids characterized by the CEF constitutive equation, and provide a more
general description of the physical processes that set the film thickness than other works which have focused on a
single geometry (with the exception of the work of Ro and Homsy [17] who presented an analysis on the basis of
the Oldroyd-B constitutive equation). The analytical results are summarized in Table 2 and Fig. 4.
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We have also performed experiments in the single roller geometry and have compared the experimentally-
observed values of the film thickness with our predictions for two different well-characterized fluids, one weakly
elastic and the other strongly elastic. Our results generally show good qualitative agreement, with small deviation,
at low rotation rates. In the weakly elastic limit, the quantitative agreement is good also, which is notable since
earlier studies with less fully characterized fluids have often found significant discrepancies (e.g. [8,10]). The lack
of quantitative agreement between the prediction of the strongly elastic theory and the experimental measurements
is most likely to be explained by the modified capillary and Reynolds numbers being relatively large in the experi-
ments. Furthermore as we noted in Sect. 2.3, the effective Deborah number, measuring the relative importance of
streamwise extension (i.e., non-viscometric kinematics of the flow) may also become significant for large rotation
rates. The CEF model cannot adequately capture such phenomena and it becomes necessary to pursue large-scale
free-surface numerical computations of the roll-coating problem using an appropriate viscoelastic constitutive equa-
tion such as the Oldroyd-B model. The ability to perform convergent and stable computations of such problems
with viscoelastic fluids is presently under development [32,33]. The analytic results developed in the present paper
provide rigorous asymptotic limits against which the predictions of such codes may be compared.
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Appendix A: A more exact film-thickness prediction in the weakly elastic limit

As noted in Sect. 2.2, the only means of deriving an equation for h(x1) when using the full CEF constitutive equation
and including the effects of a first normal-stress difference was to assume an approximate form of the velocity field.
In this section, we compare the solution (28) based on the approximate velocity field (18), which accounts for the
effects of elastic stress (although these are neglected later in the analysis), with a solution based on a more accurate
velocity field which does not account for elastic stress effects. The analysis discussed in this section corresponds
to using the power-law constitutive equation, which was described for the geometry of a flat plate and compared to
experimental results by Gutfinger [8]; here we consider a more general coating geometry.

If the normal stress differences are neglected and a power-law form is used for the viscosity η = k|γ̇ |n−1,
equation (16) becomes

C−1 dκ

dx1
− ∂

∂x2

(
−∂u1

∂x2

)n

− G sin α = 0, (39)

and the exact form of the velocity field is

u1(x1, x2) = 1 + n

n + 1

(
G sin α − C−1 dκ

dx1

)1/n

[(h − x2)
1+1/n − h1+1/n]. (40)

Integrating to obtain the flux equation, we find that

1 = h − n

(2n + 1)

(
G sin α − C−1 dκ

dx1

)1/n

h2+1/n, (41)

which is very similar to a rearrangement of the equation (23) obtained using the full CEF model (22) in the limit
E � 1:

1 = h − 1

3

(
G sin α − C−1 dκ

dx1

)1/n

h2+1/n . (42)

The prefactor 1/3 in the general CEF derivation has been replaced by n/(2n + 1) in the power-law derivation. The
effect on the final result for the film thickness can be represented by replacing C̃ in (28) by the following capillary
number:

C̃P L =
(

2n + 1

n

)n kU nκn−1
m

σ
. (43)
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The value of f (n) is identical in the more precise calculation. This result shows that the approximation made in
the derivation for the general CEF model, namely the assumption of quadratic variation in the velocity field, only
affects the prefactor in the film-thickness prediction, not the dynamic scaling. The error increases as n deviates from
the value of unity.

Appendix B: Weak inertial effects in non-Newtonian coating

The analysis leading to equation (22) for the film thickness assumes that inertial effects are negligible and therefore
is only valid when the effective Reynolds number (ρUh∞/η)(h∞/�) � 1, as indicated in Table 2. In this Appendix,
we extend this analysis to account for the effect of weak inertial forces on a thin liquid film with rheology consistent
with the weakly elastic limit and discuss our experimental measurements in light of this result. A similar analysis
could also be performed for a strongly elastic fluid.

When the fluid is Newtonian, substituting the expressions for the film thickness h∞ and the length-scale � into
the effective Reynolds number h∞R/� yields the Weber number W = ρU 2κ−1

m /σ . In the limit that inertial effects
are weak, i.e., W < 1, Quéré and de Ryck [34] used a scaling analysis to quantify the effect of inertial forces on
the predicted film thickness (34), and found that

h∞ = 1.34

(1 − cN
1 W)

(
ηU

σ

)2/3

κ−1
m , (44)

where cN
1 is a constant that must be determined. The experimental results of Quéré and de Ryck [34] show that

the film thickness of a Newtonian fluid does increase due to inertial effects when W < 1, in qualitative agreement
with the prediction (44) and in agreement with physical intuition. The value of the constant cN

1 was calculated from
experimental results by Shen et al. [35], and was found to take the value 0.65 for water and 0.69 for 35 wt% glycerin
with water. The scaling analysis that leads to equation (44) is likely to break down when W > 1, and therefore the
divergence in the film thickness that occurs when W = 1/cN

1 > 1 is outside the range of validity of the equation.
When the fluid is weakly elastic, the scalings of the inertial, capillary pressure and viscous stress gradients in

the flow (x1) direction are

− ρU 2

�
≈ −σκm

�
+ kU n

hn+1∞
, (45)

respectively. Signs have been chosen appropriately, based on a detailed understanding of the velocity and interfacial
gradients. Also, the scaling that represents the forces in the meniscus is

κm − h∞
�2 ≈ ρU 2

σ
. (46)

This result is the analog of the curvature matching requirement (see e.g. (27)), accounting for inertial effects. Elimi-
nating � from (45) and (46), and introducing unknown constants c1(n), c2(n) since we have so far only used scaling
estimates to approximate the size of terms, leads to

h∞ = c2(n)

(1 − c1(n)W)3/(2n+1)

(
kU n

σκ1−n
m

)2/(2n+1)

κ−1
m . (47)

Using knowledge of the prefactor when W � 1 (see Eq. 28) enables us to write

h∞ =
[

9

(
f (n)

1 − c1(n)W
)3 (

kU n

σκ1−n
m

)2
]1/(2n+1)

κ−1
m . (48)

If the value of the constant c1(0.71) were close to the value determined in the Newtonian limit, c1(1) = cN
1 ≈ 0.7,

we would expect to see significant deviation between the experimental results for the 0.06 wt% solution and the
theoretical prediction (28). Since this is not the case, we deduce that the value of c1(0.71) is likely to be significantly
smaller than 0.7.
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Fig. 13 Measured and theoretically predicted film thickness versus rotation rate for solution A and solution B, both made with 0.06 wt%
PAA. The solution A results are a subset of those presented in Fig. 9a

Additional experiments were performed so that the Weber number W = ρ(R)2κ−1
m /σ was reduced, i.e., iner-

tial effects were weaker, relative to the value in the measurements presented in Sect. 4, and another set of film
thickness data was taken. The fluid used was the same 0.06 wt% PAA solution but, since the experiments were
performed sometime after the solution was first mixed, the solution had aged and the rheology had changed slightly.
We distinguish between the different rheologies by referring to the first batch of results, presented in Sect. 4, as
results from solution A and the results we present in this section as results from solution B. Solution B had a density
of 1080 kg/m3 and a surface tension of 55×10−3 N/m. The power-law variation in the viscosity was fitted using the
curve η(γ̇ ) = 0.3|γ̇ |−0.54, i.e., n = 0.46. Whereas the Weber number in the experiments on solution A ranged from
0.089 upwards, in the experiments on solution B the Weber number fell in the range 0.012–1.7. In the experiments
on solution B, the angle α = 50◦. The film thickness was measured using a laser confocal surface metrology
system (LT-8110, Keyence Inc.), rather than the direct method described in Sect. 3. A detailed description of this
measurement method is given by Kavehpour et al. [36]. The measurements had a vertical resolution of 0.5 µm and
the film thickness was measured at the top of the cylinder. The results for solutions A and B are plotted in Fig. 13,
and are compared against the theoretical prediction (28).

Although the film-thickness measurements for solution B are made under conditions which correspond to small
Weber number and small capillary number, the experimental data give a film thickness approximately twice as
large as the theoretically predicted value. As can be observed from the plot, this data is in the range of rotation
rates where discrepancies were also observed between experimental measurements and theoretical predictions for
solution A. The discrepancy between the experimental data and theoretical prediction is of a similar magnitude for
both solutions A and B despite the difference in the Weber numbers. Therefore it would appear that inertia has only
a small effect, even when the Weber number is of order unity.

References

1. Ruschak KJ (1985) Coating flows. Ann Rev Fluid Mech 17:65–89
2. Landau L, Levich B (1942) Dragging of liquid by a plate. Acta Physiochim USSR 17:42–54
3. Derjaguin B (1943) Thickness of liquid layer adhering to walls of vessels on their emptying and the theory of photo- and motion

picture film coating. Comptes Rendus (Doklady) de l’Academie des Sciences de l’URSS XXXIX:13–16
4. Bretherton FP (1961) The motion of long bubbles in tubes. J Fluid Mech 10:166–188
5. Wilson SDR (1981) The drag-out problem in film coating theory. J Eng Math 16:209–221
6. Kistler SF, Scriven LE (1983) Coating flows in computational analysis of polymers. In: Pearson J, Richardson S (eds) Chap 8

Appl Sci 343. Barking, Essex England
7. Quéré D (1999) Fluid coating on a fiber. Ann Rev Fluid Mech 31:347–384
8. Gutfinger C, Tallmadge JA (1965) Films of non-Newtonian fluids adhering to flat plates. AIChE J 11:403–413
9. Tallmadge JA (1966) A withdrawal theory for Ellis model fluids. AIChE J 12:1011–1014

123



Coating flows of non-Newtonian fluids: weakly and strongly elastic limits 41

10. Spiers RP, Subbaraman CV, Wilkinson WL (1974) coating of a Newtonian liquid onto a vertical surface. Chem Eng Sci 29:389–
396

11. Spiers RP, Subbaraman CV, Wilkinson WL (1975) Free coating of non-Newtonian liquids onto a vertical surface. Chem Eng Sci
30:379–395

12. Middleman S (1978) Free coating of viscous and viscoelastic liquids onto a partially submerged rotating roll. Polymer Eng Sci
18:734–737

13. Tharmalingham S, Wilkinson WL (1978) The coating of Newtonian liquids onto a roll rotating at low speeds. Polymer Eng Sci
18:1155–1159

14. Cerro RL, Scriven LE (1980) Rapid free surface film flows. An integral approach. Ind Eng Chem Fundam 19:40–50
15. Campanella OH, Galazzo JL, Cerro RL (1982) Viscous flow on the outside of a horizontal rotating cylinder-II. Dip coating with

a non-Newtonian fluid. Chem Eng Sci 41:2707–2713
16. Campanella OH, Cerro RL (1982) Viscous flow on the outside of a horizontal rotating cylinder: the roll coating regime with a

single fluid. Chem Eng Sci 39:1443–1449
17. Ro JS, Homsy GM (1995) Viscoelastic free surface flows: thin film hydrodynamics of Hele-Shaw and dip coating flows. J Non-

Newton Fluid Mech 57:203–225
18. de Ryck A, Quéré D (1998) Fluid coating from a polymer solution. Langmuir 14:1911–1914
19. Kizito JP, Kamotani Y, Ostrach S (1999) Experimental free coating flows at high capillary number. Experiments in Fluids 27:235–

243
20. Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, vol 1. Wiley Interscience
21. Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology. Elsevier, Amsterdam
22. Huilgol RR (1975) On the concept of the Deborah number. Trans of the Soc of Rheol 19:297
23. Kulicke W-M, Clasen C (2004) Viscosimetry of polymers and polyelectrolytes. Springer
24. Ashmore J (2003) Free-surface and coating flows. Ph.D. Thesis, Harvard University
25. Moffatt HK (1977) Behaviour of a viscous film on the outer surface of a rotating cylinder. J de Mecanique 16:651–673
26. Joo YL, Shaqfeh ESG (1992) The effects of inertia on the viscoelastic Dean and Taylor-Couette flow instabilities with application

to coating flows. Phys Fluids A 4:2415–2431
27. Graham MD (2003) Interfacial hoop stress and instability of viscoelastic free surface flows. Phys Fluids 15:1702–1710
28. Grillet AM, Lee AG, Shaqfeh ESG (1999) Observations of ribbing instabilities in elastic flows with gravity stabilization. J Fluid

Mech 399:49–83
29. Larson RG, Shaqfeh ESG, Muller SJ (1990) A purely elastic instability in Taylor-Couette flow. J Fluid Mech 218:573–600
30. Muller SJ, Larson RG, Sahqfeh ESG (1989) A purely elastic transition in Taylor-Couette flow. Rheol Acta 28:499–503
31. Lopez FV, Pauchard L, Rosen M, Rabaud M (2002) Non-Newtonian effects on ribbing stability threshold. J Non-Newton Fluid

Mech 103(2–3):123–139
32. Pasquali M, Scriven LE (2002) Free surface flows of polymer solutions with models based on the conformation tensor. J Non-

Newtonian Fluid Mech 108:363–409
33. Bhatara G, Shaqfeh ESG, Khomami B (2004) Influence of visco-elasticity on the interfacial dynamics of air displacing fluid flows

– A computational study. J Non-Newtonian Fluid Mech 122:313–332
34. Quéré D, Ryck A (1996) Inertial coating of a fiber. J Fluid Mech 311:219–237
35. de Shen AQ, Gleason B, McKinley GH, Stone HA (2002) Fiber coating with surfactant solutions. Phys Fluids 14(11):4055–4068
36. Kavehpour P, Ovryn B, McKinley GH (2002) Evaporatively-driven Maragoni instabilities of volatile liquid films spreading on

thermally-conductive substrates. Colloids Surf A 206:409–423

123


	Abstract
	Abstract
	Introduction
	Model
	Nondimensionalization
	Criminale--Ericksen--Filbey constitutive equation
	Derivation of the thin-film equation
	Asymptotic results for the weakly elastic limit: E 1
	Asymptotic results for the strongly elastic limit: E 1
	Experimental set-up
	Experimental results
	Dilute polymer solution (0.06wt% PAA)
	Semi-dilute polymer solution (1.00wt% PAA)
	Discussion
	Conclusions
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


